MAXIMUM LIKELIHOOD ESTIMATORS AND LIKELIHOOD RATIO CRITERIA
FOR MULTIVARIATE ELLIPTICALLY CONTOURED DISTRIBUTIONS

TECHNICAL REPORT NO. 1

T. W. ANDERSON and KAI-TAI FANG

SEPTEMBER 1982

U. S. ARMY RESEARCH OFFICE
CONTRACT DAAG29-82-K-0156

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



MAXIMUM LIKELIHOOD ESTIMATORS AND LIKELIHOOD RATIO CRITERIA
FOR MULTIVARTATE ELLIPTICALLY CONTOURED DISTRIBUTIONS

TECHNICAL REPORT NO. 1

T. W. ANDERSON
STANFORD UNIVERSITY

and

KAI-TAT FANG
STANFORD UNIVERSITY AND INSTITUTE OF APPLIED MATHEMATICS,
ACADEMIA SINICA, BEIJING, CHINA

SEPTEMBER 1982

U. S. ARMY RESEARCH OFFICE

CONTRACT DAAG29-82-K-0156

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

APPROVED. FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



THE VIEW, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE THOSE OF
THE AUTHOR(S) AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE

ARMY POSITION, POLICY, OR DECISION, UNLESS SO DESIGNATED BY OTHER DOCUMEN~
TATION.



1. Introduction.

If the characteristic function (c.f.) of an n~dimensional random

vector x has the form exp(it'u)¢(t'st), where winx 1, Z:n x n,

2
K’

rk§=k, §_>_O, and ¢ e®k= {¢[¢(t) is a c¢.f. such that ¢(ti+---+t
is a c.f. on mk}, we say that X is distributed according to an
elliptically contoured distribution with parameters s § and ?, and
write x % ECn(E,§,¢).

Elliptically contoured distributions have been extended to the case
of matrices by Dawid (1977, 1978), Chmielewski (1980), and Anderson and
Fang (1982b).

Let X, M and T be n x p matrices. We express them in terms of

elements, columns, and rows as

(x!. )
()
= = = : = '
X = (Xij) (51,.-.,§p) : s x = vec X' ,
1
*(n)
\
ot
u(1) )
= - 3 i = '
I:-[ = (uij) (Elga.-,};lp) : . E vec bf s
) v
H(n) J
rt' \
~(1)
= = = ¢ - ]
3 (tij) (El,...,Ep) : , t = vec T .
t'
~(n)
\ )
¥
Here x = vec X' = (le),...,xzn))' with the corresponding meanings for
p and t,
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If the c¢.f. of a random matrix % has the form

(1.1 exp(d Z EHEGO? EhE @y It @)

with Zl,...,Z > 0, we say that X is distributed according to a

multivariate (rows) elliptically contoured distribution (MECD) and write
X n MECn (M Z 12" ., ,¢) In this paper we consider only the subclass

Xp

of MECD in which the function ¢ satisfies

(1.2) cp(tl,...,tn) = ¢(t1 + o + tn) 3
we continue to denote MECD in this subclass by MZE‘.CnX p(M,ZI ...,zn;q;).
Let u(q) denote a random vector which is uniformly distributed on

the unit sphere in RY? and Qq(lltllz) denote its c¢.f.. Schoenberg (1938)
pointed out that a c.f. d)e(I)m if and only if

oo}

1.3) $() = [ @ (urP)dF(r)

0
for some distribution function F(x) on [0,»). Since <I>m o Cbn for
m < n if the distribution function F of R is related to ¢ as in
(1.3) with n substituted for m, then ¢€<I>m, m < n, and there
exists a distribution function F*(x) of R* being related to ¢ as in
(1.3) with F* substituted for F. There exists a relationship between R
and R¥*, that Q:'Ls R* d Rb, where b > 0, b2 ~ B(m/2, (n-m)/2), b is

independent of R, and xg y denotes x and y have the same

~



distribution. (cf. Cambanis, Huang and Simons (1981).) TFor convenience

we denote these relationship by R <+ ¢¢ <I>n and R¥* d Rb

m/2, (n-m)/2 ¢ (bm'
M52, 8 30)

with n > p, Zl > 0,...,Zn > O,d)€<I>np and X has a density of the

Throughout the paper we assume that X ~ MECn X

form

n
(1.4) Tz, |72

1=

n
-l
llgil g[izl(’i(i)‘li(i)) i &y Heay)!

In this case X can be expressed as following

- _ v (p) i Py
1.5) Ro= M4 (RAlgyuy e RAL U ED T,

(p)

where Rj’ j=1,...,n, are independent of wu,*’, j =1,...,n,

u(p),...,ur(lp) are independent, uj(p) d u(p), Zj = AJ!Aj is a factorization

~ ~

of §J,,j=l,...,n, R]_ZO’”"RHZO and

2 2, d .2
R S RO@,...d)

(Rl,... N

where (dl, cen ’dn—l) " Dn(p/Z, «++,0/2;p/2), a Dirichlet distribution,

dn = l—dl - eee - dn-l’ R 1is nonnegative and independent of dl,...,dn,
and
(1.6) g% ¢

n
v"l -
L Foy ) T B @

MRen By Tt T T a L= eI sE wewrite

X LECnxp(u,Z,cb). In this case (1.4) reduces to



.7 2™ % 100
where

n
.8 6= b GV EeW
and (1.6) is
(1.9) R & tr g"lg i

The maximum likelihood estimators and the unbiased estimators of
U and g, and their distributions are studied in Section 2 and some
discussion on the existence and uniqueness of maxima is given., In
Section 3 we extend many basic likelihood ratio criteria from the normal
case to the MECD case. We find that most of the criteria and their
corresponding distributions are the same in the class of MECD. A simiiar
discussion on testing the general linear hypothesis is given in Section 4.
Throughout the paper Nn(E,E) denotes the n~dimensional normal
distribution with mean u and covariance matrix §; B(ul,az) denotes
the Beta distribution with parameters 0q and 0y3 Dm(ul,...,um_l;am)
denotes the Dirichlet distribution ﬁith parameters Q,...,0 ; F(k,m)
denotes F~distribution with k and m degrees of freedom. Wp(g,n) denotes
the Wishart distribution with p X p covariance matrix § and n degrees
of freedom; U denotes Wilks' distribution which is the distribution

sM,

of the ratio |G|/|G+H|, where G " Wp(Z,n), H Wp(Z,m), and H and G



are independent; In denotes the n X n identity matrix; €, denotes

the m x 1 vector with elements 1; rk A denotes the rank of the matrix

A and tr A denotes the trace of A.

2. Estimation of U and X and their distributions.

Assume X n LECn><p(u,Z,¢) and X has a density

l-—n/2

(2.1) |z g(tr §"1§) ,

where G 1is defined by (1.8). Let

t~10

(2.2) W= L (f(j)'f)(f(j)'f))' ’
hi
where
n
(2.3) f=1 ] x

521 ~(q)
Then W= X'DX, with D=1 - (1/n)e g'.
~ =2 ~ n ~n-<n

Lemma 1. If n >p, then G and W are positive definite with probability one.

Proof. TFrom the assumption and (1.5) we have

(2.4) X = e’ +RUA

~

where U:n X p, vec U = u(np), A:p x p and A'A =3 > 0. Hence

~



6= (x-e u")' - u") & Raruua & Rarytyaser vy,
where Y:n x p with i.i.d. elements distributed according to N(0,1).
Since Y'Y > 0 with probability one and P(R2 >0) =1, then P(G >0) =1.

The property for W is proved similarly. Q.E.D.

In order to obtain the maximum likelihood estimators of y and X

we need the following lemma.

Lemma 2. Assume that g(+) is a decreasing and differentiable function

such that cg(xi 4+ e + x;) is a &ensity in iRN, where c¢ 1is a constant.

Then the function

N/

(2.5) hi(x) = x 2g(x) for x>0

has a maximum at some finite X > 0, and X is a solution of

(2.6) g'(x) + (N/2x)g(x) = 0

Proof. Since cg(xi + oo + x§) is a density, we have

TrN/2 oo

f XN/Z-—].
N

o > I---f g(xi + oo + xﬁ)dxl...de = g(x)dx

using the transformation to spherical coordinates (Anderson (1958), Chapter

7, Problem 4, for example), and



N/2-1 f2x

X

Zg(2x) = =V 25 (2x) <x g(t)dt <

2x
f tN/z'lg(t)dt + 0
X

N/Zg(x) + 0 as x > », By this fact and

as x >, i,e,, hx) =x
h(0) = 0, h(x) > 0 for Vx > 0, the first assertion of the theorem folloﬁs.

Now assume that h(x) has its maximum at X > 0; then

0 = B'Gxg) = Xy CL(W2x)gxy) + 8 (xp]

which completes the proof. Q.E.D.

From Lemma 2, when N = np, the function

[

2.7 £O) = A7 25070

arrives at its maximum at some finite AO' Throughout the paper we denote

this AO by Kmax(g).

It is well-known that if h'(xo) =0 and h“(xO) < 0 (if it exists),

then h(x) has a local maximum at XO' If there exists a unique such

Xg» then h(x) has a unique maximum at x In the proof of Lemma 2 we

0
see that h'(xo) = 0 if and only if x; is a solution of (2.6). Further
if this Xg satisfies the following inequality

g"(x) < (NOW)/4xD)g(xp)

then h"(xo) < 0.
Lemma 2 shows us that the equation (2.6) has at least one solution if

g(*) satisfies the conditions of Lemma 2. For example, if g(x) = exp(-ax),



a > 0, then the equation (2.6) has a unique solution Xg = N/2a.

If gi) = e X exp(—e_x), the equation (2.6) becomes
e X =1-~-0N2x .

It is easy to see that this equation has a unique solution x0(> N/2).

The following are some computations:

N XO

8 4.,069529635
10 5.032816088
12 6.014691496
20 10.00045381
30 15.00000459
40 20.00000004

We can combine these two examples to obtain the following interesting

example in which the equation (2.6) has two solutions. Taking N = 6,

let

-x
e . 0<x<6,

g(x)

-X -x 6.014691496 < x < ®
e " exp(-e ), -

and the values of g(x) on interval (6, 6.014691496) depend on a poly-

nomial
(x) = a x3 + a x2 +a,x +a
P 0 1 2 3
such that
p(6) = g(6), P(6.014691496) = g(6.014691496) ,
p'(6) = g'(6), p'(6.014691496) = g'(6.014691496) .



According to this requirement, we find

= 4,2951974, a, = -77.,4064525, azl= 464 ,9942434, a, = -931.0921074 ,

2y 1 3

by calculation. It is easy to check that the g(x) 1is decreasing and differ-

entiable, and the corresponding equation (2.6) has two solutions: X01 = 6

and Xgp = 6.014691496 (cf. the above first example with a =1 and N = 12

and another example with N = 12). 1In this case we need to compare the

values of h(x) at x and x,.. We have

01 02
h6) = 6% = 115.4686616
and
h(6.014691496) = (6.014691496)0e=0-014691496  _=6.014691496,

115,364451

Thus h(x) arrives at its maximum at 6.

Now we come back to the maximum likelihood estimators of 4 and Z.

Theorem 1. Assume that X7 LECn>< p(u,z,q)) with n>p and X has a
density (2.1). Further assume that g(+) is a decreasing and differentiable
function. Then the maximum likelihood estimators of u and X are

~

and § = Kmax(g)v'l.

D
fl
18R]

Proof. It is easy to see that

log L(u,I) = -(n/2) log |Z] + log gltr 2w+ n(g-g)'§“l(g—g)] X



The assumption that g(+) is decreasing and I > 0 shows us log L(u,X)

arrives at its maximum at U = x and the concentrated likelihood is

(2.8)  log L(x,I) = -(n/2) log |3|+ log g(tr £ W) .

By Lemma 1, W > O with probability one, So there exists a nonsingular matrix

1

C with probability one such that CC' = W. Let = C—lZC'— . We then have

Iene R4

log L(x,Z) = -(n/2) log lil - (n/2) log |W| + log g(tr E—l)
There exists an orthogonal matrix [ such that
E'EE = A= diag(Xl,...,Xp)

with Al,...,kp > 0. Therefore

) _
-(n/2) _2 log A; + log g(.E 1/3y) - (n/2) log W]

log L(x,%)
v i=1 i=1

E(yseeend)) = (0/2) log W],

say. As f(kl,...,kz) is a symmetric function of Al,...,lp, we have

Al é AZ = .. = lp = A, say. The function f(Xl,...,AP) reduces to
(2.9 £(A) = -(np/2) log A + log g(p/A) .

The theorem follows by Lemma 2. Q.E.D.

10



It is clear from log L(u,X) that x and W are a sufficient

set of statistics for Y and 3.

~

From the proof of Theorem 1 we have

-np/2 -n/2

(2.10) max L(Y,I) = Amax(g) g(p/Amax(g))]g[ .
u,2>0
In the normal case
-np/2e—1/2x

g(x) = (2m)

which satisfies the conditions of Theorem 1. As is well-known there

exists a unique solution Amax(g) =1/n, and § (lln)y.

Now we want to obtain the distributions of x and ) W.
- max(g) ~
X
If X LECn><p(9,§;¢) with P(X=0)=0, and X = § with X :m X p,

~2

the distribution of §i§l is denoted by MP 2(Z;m/2;(n—m)/2;¢). Anderson
- : ’ ~ .

and Fang (1982b) have obtained the density of Mp 2(Z;m/Z;(n—m)/2;¢).

Theorem 2. Assume that X% LEC P(u,2,¢) with n > p and X has a

X

density (2.1). Then

(1) the joint density of x and W is

p/2,(n-1)p/2-p(p-1)/4 - - -1,
(2.11) = T lgl(n‘P)/z'llgl“n/zg(tr 5 1Y+n(§-g)'§ 1(§_E))

p
I T((a-3)/2)
3=1

11



(2)

1R

v EC (4, (1/)L,¢) with ¢ed <> R¥ =Rb 1y, /53

1
(3) W MGP,Z(Z;(n—l)/2;§?¢)’ whe?e ¢€;®(n—l)p <> R¥* =
Rb(n—l)p/Z,p/Z and the density of W is
np/2-p(p-1)/4  _ o @ _
(2.12) 2n |z n/2|w|(n p)/2-1 [ P lg(r2+tr z lW)dr
< ~ 0 ~ o~

I'(p/2) T T'((n-3)/2)
j=1

Proof. Let B be an n X n orthogonal matrix with the last row

(1/va,...,1//n) and Y = (y(l)""’Z(n))' = BX. Then
Y(n) =|/H% ’
n-1
AR

From Corollary 2 of Lemma 2 of Anderson and Fang (1982b) we have

vec(Y) = vec(BX) ~ ECnp(p X (Ben),Z x (BB"),9) .

Thus we have

U@ (Be)) = 1@ (0',_...,0,1//5)'
and

te @) -Iel,

Using Lemma 13.3.1 of Anderson (1958) and y(n) = /nx (2,11) follows.

12



Since W = X'DX with D = In'-(l/n)eneé’ rkD=n -1 and D2 = D,

~ o~ ~

W MGp 2(2;(n—l)/2;%;¢) from Theorem 9 of Anderson and Fang

’

(1982b) and the density (2.12) follows from Section 5.1 (2)(B) of the
same paper. The assertion (2) follows by Corollary 2 of Lemma 2 with

B = (l/n)aa of Anderson and Fang (1982b), Q.E.D,

The next natural question is what are the unbiased estimators of

Y} and X? We need the following lemma:

Lemma 3. Assume x ECn(u,Z,¢) with ¢ <+ R and ER2 < . Then
(2.13) Ex =y, and E(x-) (x-u)' = (ER%/m)% .

(cf. Cambanis, Huang and Simons (1981).)

Theorem 3. Assume that X ECn><p(E’§’¢) with ¢e:®np <> R and
2

0 < ER” < o, Then the unbiased estimators of py and % are | = X
and
(2.14) ' I=—2— w
~ (n-1)ER" ~
respectively.

Proof. From Theorem 2 and Lemma 3 the first assertion is obvious. Using
) n-1
the notation of the proof of Theorem 2, we have W = 2 y(j)yzj). If
. ~ j=1~ ~ ’
we can prove Ey(j)yéj) = (ERz/np)Z, j=1,...,n-1, then (2.14) follows.

It is easy to show that Y(3) "N ECP(9,§,¢) with ¢s:¢p > R*==Rbp/2,(n—l)p/2’

13



j=1,...,n~1 (cf. Lemma 2, Anderson and Fang (1982b)). By Lemma 3

and the moments of Beta distribution

Ez(j)zzj) = (ER*Z/p)§ = (ERZ/np)g ,

which completes the proof. Q.E.D.

Example 1. (Multivariate t-distribution). Let § be an n X p random
matrix with i.i.d. rows distributed according to Np(E,E) and s~ Xv
be iﬁdependent of g. Let g = Jsg/s, then the rows of X and vec Z'

have the multivariate t-distributions. It is easy to verify the following

facts (cf. Johnson and Kotz (1972) and Anderson and Fang (1982a)):

(1) The density of Y is

Il (npv) /2] 2|2 P

. ~ -1 -1, 1/2(ap+v
(2.15) a+v tr GZ ) s

T (v/2) (vr\))np/2 ) ~
where

n
“= LAnPae®
(2) ¥~ LEC,, (1,5,¢) with
(2.16) g(x) = c(l-+v_1x)_l/2(np+v)
where
¢ = T((ap+v)/2) /T(v/2) /()P 2

14



Therefore, g(x) satisfies the conditions of Theorem 1 and Amax(g)==1/n.

(3) The maximum likelihood estimator of ¥ is W/n, where W is
defined by (2.2) with x substituted for V.

(4) The unbiased estimator of I is ((v-2)/(n-1)v) W.

3. Likelihood ratio criteria.

In this section we study problems of testing hypotheses about mean
vectors and covariance matrices for the elliptically contoured distributions. The
likelihood criteria are obtained by a unified technique, We find that most of
these likelihood ratio criteria are independent of the specific form of the

density in the class of MECD.

3.1 Testing lack of correlation between sets of variates.

Assume that X ~ LECn (4,%,4) with n >p and X has a density

Xp
(2.1) where g(x) is a decreasing and differentiable function. Partition

U, Z, and W as follows:

( (l) 4 N r . 3\
3 211+ Iig M1 oo Mg
(4.1) Moo= . . § = . . s, W= . : ,
(9)
X ces X W W
b ' ~ql ~qq ~ql ~qq
\ J L J
where 1 (@) ha ivel d
E ""’E ve pl,...,pq components, respectively, an
gij and Wij are p, X pj matrices, 1i,j =1,...,q9. Let

15



¢ 3\
211 9 0
(3.2) 5= O Zgp e 0 :
2o = . :
0 0 3
~ - ~qq
! )

then §O > 0 1if and only if §11 >‘0"“’§qq > 0. Testing lack of

correlation between sets of variates is equivalent to testing the hypothesis

L=1

Lemma 4. Under the assumptions of Theorem 1

q
(3.3 max  LGI) = A @20 | |2

> 1=
u,2,>0 h|

~

g (p/>\mx (g))

Proof. To show the pattern we consider only the case of ¢ = 2. By a

method similar to that used in the proof of Theorem 1, we have

max L(u,ZO) max L(}E,ZO)
u,z,>0 T ZO>0 -
12 p p -1
= (I;_‘?X {-(n/2) Hl log }\gl) - (n/2) 2 log }\§2) +1log g( Hlk.(l)
A0 =t =t 3=1 3
j=1,. ."pi
i=1,2
P -1
+ AP ) - (/) x (og|uy, | +1oglW,, D}
j=1 - "
1) 2) -

where A{l) se e ,AI() and )\](.2) ye e ,X; are the eigenvalues of le and

~

1 2

16



Zyp» Tespectively, and I, = gilgllgi_l’ 22 = 9£1§229§—1’

v ' . . .
9191 Hll and 9292 HZZ' As the above function in the braces is
a symmetric function of Ail),...,xél); Xiz),...,kéz), these {X§1)}

1 2

must be equal. We have

max L(u,Z.)

max {-(np/2) log A + log g(p/k)-—(n/Z)(log|Wll!-+logIW22I))
H, 2,>0 ¥ ~

A>0 ~

-n/2

£

2l—n/2}

log{Kmax(g)-np/zg(p/Kmax(g))[Hlll W,

which completes the proof. Q.E.D.

Theorem 4.‘ Under the assumptions of Theorem 1, the likelihood ratio

criterion for testing

(3.4) H:Ei:] =0, i# j» 1,3 =1,...,q ,
is
max L(E’Z )
W,Z,>0 ~ {w] 1n/2
(3-3) T Thax LU %) | q
u,Z >0 I |w5j[
\J=1
and
q
(3.6) 2md gy
j=2 1
R et
where vz,...,qq are independent and vj N Upj’ﬁj,n_sj with pj = izl Py

17



Proof. The criterion (3.5) is from (2.10) and (3.3). By (2.4),

X = enu' + RUA. Partition A into A = (Al,...,Aq) with Aj:p X p

~ ~

52

3
=1,...,9. Then

[N
|

1

2 2

W S RA'U'DUA = R°A'Y'DYA/tr Y'Y
2" 2" 1 3
Wiy = RPAIU'DUA, = R°AIY'D A./tr Y'Y, i=1,...,q ,

where D,U and Y have the same meaning as before, Thus

q
3.7) 2/n d |A'Y'DYA|/ T |A!Y'DYA, | |,
j=1 3 N

and the distribution of 1 is independent of any specific form of the

2/n
density in the class of MECD. In particular we can consider
X(j) n Np(u,Z) independently, j = 1,...,n. Hence (3.6) follows by
Anderson (1958), Chapter 8. Q.E.D.

When q = 2, P = 1 and Py =P - 1, testing the null hypothesis

21, = 0 1is equivalent to testing R” = 0, where R is the multiple

correlation coefficient. (cf. Theorem 5 of Anderson and Fang (1982Db).)

3.2 Testing the hypothesis that a mean vector is equal to a given vector.

Consider the hypothesis H:u = u The likelihood criterion is

b 20’

T = max L(uO,Z)/ max  L(uy,Z) .
>0 ~0~ yz>o0 ~°

By a method similar to that used before we find

18



max Llug,D) = A (&) " 2ge/n__ ()|, ™2,
Z>0
where
"o = Z Lo E@ T
Thus
2/n _ ¥ M 1
R N Y T2
~0 [Y+n%j$)Q1bfl 1+T7/(n-1)
‘where
2

(-1 Gotg) W Gotg)

H
il

which is the same as in the normal case. Also, if the null hypothesis

is true, the distribution of T2 is the same as in the normal case. (cf.

Theorem 6 of Anderson and Fang (1982b).)

3.3 Testing the hypothesis of equality of covariance matrices.

Now we consider the case that the sample are from ¢q populations

with mean vectors u(l),...,u(q) and covariance matrices I

2 L RRRRLE Y

respectively. Assume that the joint distribution of the samples is a multi-
variate elliptically contoured distribution, i.e., the data matrix

Xn MLE (M; Z sesesk

nxp'.’<1l ~1° z

~2,...,Z

~2,...,§q,...,§q;d>) with n §is

n, §'s,...,nq §és, n, > p,...,nq > p, n, +n, + eee + nq =n and the rows of

19



1), 2
M are ny E( )'s, n, E( )'s, .,nq E(q)'s, successively. From (1.4)
the density of X is
1 q -n,/2 § -1
(3.8) L(u( ),...,u(q); preeesl) = I |2, Y g Y tr e |,
o e ~ ~q . ~1 . ~i <
i=1 =1
where
n, X
gi = 3 1- (}E(J) u(l))(}f(J)-u(l))'
J—nl_l+l
with n, = 0, n, =ny + e + n,.
We wish to test the hypothesis
(3.9) Hl:gl = §2 = eee = Eq
Lemma 5. Under the assumptions of Theorem 1
(3.10) max L(u(l),...,u(q);Zl,...,Z )
(1) (@) > A ~4
Uy Taeeenl ,§12>0,...,§q;>0
q n, pni/Z -ni/2

lgp/A__ (8)) ,

- -np/2 _i
B Xmax(g) [igl(tl) Igil max

where

By _ (1) (1)1
LEOE DEHE)

b
=R

. n,
%(1) = (I/n)z *

j=n,_

X
~(3)
1__1+l

20



Proof. By a method similar to that used in the proof of Theorem 1,

we have

1
, )max log L(u( ),...,u(q);Zl,...,Zq)
i Ly " ~ o
L2 >0
i=1,...,q
= max log L(i(l),...,i(q);zl,...,Z )
Zl>0,...,2 >0 ~ ~ ~ ~q
q D .
= max {~(1/2) z Z n, log )\j(l)

A5 0,5-1,.. . 0n, =1 3=1
3 i

i=1,...,9

¥ B (-1 g
+log g( ) ) A, )= (1/2) log } n, log |W,|}
i=1 j=1 4 i=1 * ~1

~

are the eigenvalues of Zi

= CTIZ.C!_l and C.C! ..

where A(i),...,k(i)
1 P

Because n, > p, Yi > 0 with probability one by Lemma 1 (i = 1,...,q).
The function in the above braces is a symmetric function of X(l),...,A(l)
1 P

. = k;l) = K(i) and the quantity in the

for i=1,..,,q9. Therefore Ail) = ..

braces becomes

q : (1Yo q
(3.11) -(p/2) ) nilogkﬁl)-klog g(p % l(l) l)-—(1/2) ) nilog|Wil = L*
i=1 i=1 i=1 ~

say. Let BL*/BA(i) =0, i=1,...,q. We have

g 1 (P§ )\( i) "1)
1

2 .
2t .
n, q ey
1 & (v) KD -1y

N

1,...,q9 ,
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and A(i)/k(l) = nl/ni, i=1,...,q. Let A = k(l)nl/n, then
X(l) = nX/ni, i=1,...,q, and (3.11) becomes
n | q
-(np/2) log A +1log g(p/A) - (pn/2) logn~ (p/2) ] m, logn, - (1/2) } n, log [W,]
i=1 i=1 s
which completes the proof. Q.E.D.
Similarly, we find
1
(3.12) max L(B( )""’E(q)3§"'°’§)
U(l),---,u(q),2'> 0
- ~np/2 -n/2
>\max(g) g(1:’/>\max(g))l‘§l + + qu :

Thus we obtain the following theorem:

Theorem 5. Under the above assumptions the likelihood ratio criterion for

testing (3.9) is
4 i n
(3.13) LA s T

which has the same distribution as in the normal case.

was discussed by Anderson (1958), Chapter
=(1) =(q)
?

10, A sufficient set of statistics is x eeasX , Wl,...,W .

~

The distribution of Tl
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3.4 Testing equality of several means.

Assuming § = ey = §q = X, say, we want to test the hypothesis

(3.14) " :E(l) e =@

it
b~

max L(E(l),...,g(q);§,...,§) ‘
(l)’ . ’u(q)’z>0 IW]D/Z
4.15 == = = = -
( ) T2 max L(E"°.’E;§""’Z) IW b oeee + W ln/z
U9§ >0 ” ~ ~q

where W 1is defined by (2.2).

It is well-known that the hypothesis H2 can be expressed as a linear

hypothesis which will be discussed in the next section.

3.5 Testing equality of several means and covariance matrices.

We want to test
(3.16) H:u(l) = ee. = u(q) and Zl = eses =7

From Lemma 10.3.1 of Anderson (1958), the likelihood ratio criterion for

the hypothesis H is the product of the likelihood ratio criteria for Hy

and HZ’ i.e.
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q |w,| n,/2 pn,/2
(3.17) T =TT, = Hl (Tﬁﬁ;ﬁ * (ﬁl) * ’
i=1 1%

i

which has the same distribution as in the normal case.

3.6 Testing the hypothesis that a covariance matrix is proportional to a

given matrix.

Now we come back to the case of X ~ LEXn><p(u,Z,¢) and want to test

_ 2
(3.18) H:Z =0 Ly» §O >0,
where §0 is given. First, we assume X, = IP and decompose the

hypothesis H into H1:Z is diagonal and H2:the diagonal elements of
E are equal, given § is diagonal. Let gl = diag(cll,...,cpp) and

22 = diag(cz,...,oz). It follows from Lemma 4 that

P
-np/2 -n/2
(319 max LI = A @ P e @) (1w )P
ok s J1
B,I,> 0 - 3=1 _
where Wjj is the j-th diagonal element of W. Similarly
-np/2 -np/2
(3.20) max  LGuI)= A (&) " 2ep/A_ (8)) (tr W/p) op/
y,o0 >0 77 R

Then we have

R . i
(3.21) Y= e IGD - P iy

L,z >0 -7 Tw,.

~o™~ j=l JJ
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max L(E,§ ) P Wn/2

(3.22) _p0C 0 _jh i
' 27 e LALID  (er w/pyP/2
and
| |H|n/2
(3.23) T = o w/p)np/Z

When %#IV the corresponding criterion is

(3.24) T =

which has the same distribution as in the normal case. (cf. Anderson

(1958), Chapter 10).

3.7 Testing the hypothesis that a covariance matrix is equal to a given

matrix.

We wish to test I = ZO > 0, where ZO is given. The corresponding

likelihood ratio criterion is

3.2 =1 @ % N @)er Tow w1V

Note that the distributions of T are not the same in the class of MECD
and depend on ¢. Similarly, we find that the likelihood ratio criterion
is

for testing H:I = Zo and u = Ky
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- np/2 -1 -1 = yie~Llo= -1, n/2
(3.26) T = A (&) g T(p/A , (8))gler W R, Ty (x-u)) [ZW[TT
4, Testing the general linear hypothesis.
Consider the following multiple regression model:
Taxp = )Enxq?iqu *Eixpr PO ™ kX =gq,
(4.1) E "N LECn><p(O’Z’¢) with a density lZI'n/Zg(tr 2-1g) and G=E'E

where g(+) 1is a decreasing and differentiable function .

We want to find the maximum likelihood estimates of B and Z. As

LD = 2™ g er 170
IR S OGS ORI e T i D
where
4.2) B- TRy,

the MLE of B is the least squares estimate B (cf. Sec. 7, Anderson

and Fang (1982b)). Maximizing

-n/2

LD = 2 e 57w ()

with respect to I gives the maximum likelihood estimator
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A _ A ' A
(4.3) L= A (8)(I-XB)'(Y-XB)
and

-np/2 -n/2

(4.4) L(B,5) = max L(B,I) = A__(g)

| (Y-XB) ' (Y~XB) |
B,Z>O ~ max ~ o~ ~ e

g(p/Amax(g)) >

where Amax(g) has the same meaning before.

Similarly, the unbiased estimators of B and ¥ are B and

[ e Dl

= —D2P _ (y-xB)'(Y-XB)
(n-q)ER” 7T T

respectively, if the second moments of components of E exist. A sufficient
set of statistics is B and IX.

We want to test the following linear hypothesis:
4.5 H:HB = C, H:t Xq, C:t Xp and rkH=t¢t <p ,

It is easy to show that

-n/2

(4.6) max  L@,D = A @ P N @)]s +1™V7,

HB=C,Z >0 ~ ~ max

where

S = (Y-XB)'(Y-XB)



and
2 1 T s
T = (HB-C) (H(§ %) ') “(HB-C)
Thus the likelihood ratio criterion for H is

max L(B, %)
BI>o -
(4.7) T= max L(B,Z)
HB=C,Z2 >0 ~ 7

l-—n/Z
-n/2

s
|s+ 7]

which has the same distribution as in the normal case (cf. Theorem 12 of

Anderson and Fang (1982b).)

We summarize the above results as follows:

Theorem 6. Under the model (4.1) the maximum likelihood estimators of
B and § are (4,2) and (4.3),respectively.  The likelihood ratio

statistic for testing the hypothesis (4.5) is (4.7) and the distribution

T—Z/n is U when the null hypothesis is true.

of
p,t,n—q
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